

THE LEADER IN ENVIRONMENTAL TESTING

Performance Characteristics of Different Sample Preparation Methods

Charlie Carter, Ph.D. Richard Burrows, Ph.D.

Copyright © 2015, TestAmerica Laboratories, Inc. All rights reserved.

March 17, 2015

Comparing Methods

THE LEADER IN ENVIRONMENTAL TESTING

Lots of variables

- ✤ 3510, Separatory Funnel Extraction
 - How vigorous is the shake?
 - What is the Sep funnel material?
 - How skilled is the analyst?
 - Variables in concentration technique
- ✤ 3520, Continuous Liquid / Liquid Extraction
 - Design of extractor
 - Solvent cycling rate
 - Condenser temperature
 - Variables in concentration technique

Two options

THE LEADER IN ENVIRONMENTAL TESTING

- Control all the variables
- Use a lot of data
 - Many different labs
 - Many different analysts
 - Many detail differences in technique

THE LEADER IN ENVIRONMENTAL TESTING

Method 8270, Semivolatiles GCMS Prep methods 3510 – Separatory funnel 3520 – Continuous Liquid Liquid Extraction

Data Collection

THE LEADER IN ENVIRONMENTAL TESTING

25 labs
106 common analytes
57 uncommon analytes (< 10 LCS or MS per month for one of the methods)
Measure recovery for LCS, MB. MS and MSD
200,000 lines of data per month

3510 vs 3520 overall

THE LEADER IN ENVIRONMENTAL TESTING

3520 better than 3510

60 50 40 30 20 10 Lab QC 0 Field QC Phenol Caprolactam Benzoic acid Phenol-d5 4-Nitrophenol N-Nitrosodimethylamine 2-Fluorophenol 3 & 4 Methylphenol 2-Fluorobiphenyl (Surr) Pyridine Pentachlorophenol 1,4-Dioxane

Copyright © 2015, TestAmerica Laboratories, Inc. All rights reserved.

7

PAH

8.0 6.0 Lab + 3520 better 4.0 Field +3520 better 2.0 0.0 Naphthale mdenal1,2,3.cdlpyrene -2.0 enzolbh entolk enzol9. Horanthe penzla Wsene macene Rzolal nzolal april phinylene eve e б -4.0 anthem enviene Macen anthe intact 2 -6.0 -8.0 -10.0

Identifying Problems

THE LEADER IN ENVIRONMENTAL TESTING

LabA vs All labs

PCBs 3510 vs 3520

THE LEADER IN ENVIRONMENTAL TESTING

3510 vs. 3520 Lab Spike

Recovery 3510

Recovery 3520

PCBs 3510 vs 3520

THE LEADER IN ENVIRONMENTAL TESTING

3510 vs 3520 Sample spike

■3510 Recovery

■ 3520 Recovery

DCB % recovery by lab

DCB and TCMX percent recovery by lab

THE LEADER IN ENVIRONMENTAL TESTING

Conclusions

- As expected, 3520 is better than 3510 for acidic analytes
 - But, 3510 is better than 3520 for many "active" analytes
- 3510 appears better than 3520 for PAH for LAB QC
 - But not so much for samples
- 3510 is overall better than 3520 for PCBs
- Large data sets can be used to identify both low performing and high performing labs

THE LEADER IN ENVIRONMENTAL TESTING

Questions?